1,221 research outputs found

    The Bacterial Photosynthetic Reaction Center as a Model for Membrane Proteins

    Get PDF
    Membrane proteins participate in many fundamental cellular processes. Until recently, an understanding of the function and properties of membrane proteins was hampered by an absence of structural information at the atomic level. A landmark achievement toward understanding the structure of membrane proteins was the crystallization (1) and structure determination (2-5) the photosynthetic reaction center (RC) from the purple bacteria Rhodopseudomonas viridis, followed by that of the RC from Rhodobacter sphaeroides (6-17). The RC is an integral membrane protein-pigment complex, which carries out the initial steps of photosynthesis (reviewed in 18). RCs from the purple bacteria Rps. viridis and Rb. sphaeroides are composed of three membrane-associated protein subunits (designated L, M, and H), and the following cofactors: four bacteriochlorophylls (Bchl or B), two bacteriopheophytins (Bphe or [phi]), two quinones, and a nonheme iron. The cofactors are organized into two symmetrical branches that are approximately related by a twofold rotation axis (2, 8). A central feature of the structural organization of the RC is the presence of 11 hydrophobic [alpha]-helixes, approximately 20-30 residues long, which are believed to represent the membrane-spanning portion of the RC (3, 9). Five membrane-spanning helixes are present in both the L and M subunits, while a single helix is in the H subunit. The folding of the L and M subunits is similar, consistent with significant sequence similarity between the two chains (19-25). The L and M subunits are approximately related by the same twofold rotation axis that relates the two cofactor branches. RCs are the first membrane proteins to be described at atomic resolution; consequently they provide an important model for discussing the folding of membrane proteins. The structure demonstrates that [alpha]-helical structures may be adopted by integral membrane proteins, and provides confirmation of the utility of hydropathy plots in identifying nonpolar membrane-spanning regions from sequence data. An important distinction between the folding environments of water-soluble proteins and membrane proteins is the large difference in water concentration surrounding the proteins. As a result, hydrophobic interactions (26) play very different roles in stabilizing the tertiary structures of these two classes of proteins; this has important structural consequences. There is a striking difference in surface polarity of membrane and water-soluble proteins. However, the characteristic atomic packing and surface area appear quite similar. A computational method is described for defining the position of the RC in the membrane (10). After localization of the RC structure in the membrane, surface residues in contact with the lipid bilayer were identified. As has been found for soluble globular proteins, surface residues are less well conserved in homologous membrane proteins than the buried, interior residues. Methods based on the variability of residues between homologous proteins are described (13); they are useful (a) in defining surface helical regions of membrane and water-soluble proteins and (b) in assigning the side of these helixes that are exposed to the solvent. A unifying view of protein structure suggests that water-soluble proteins may be considered as modified membrane proteins with covalently attached polar groups that solubilize the proteins in aqueous solution

    "Spin-Flop" Transition and Anisotropic Magnetoresistance in Pr_{1.3-x}La_{0.7}Ce_{x}CuO_{4}: Unexpectedly Strong Spin-Charge Coupling in Electron-Doped Cuprates

    Full text link
    We use transport and neutron-scattering measurements to show that a magnetic-field-induced transition from noncollinear to collinear spin arrangement in adjacent CuO_{2} planes of lightly electron-doped Pr_{1.3-x}La_{0.7}Ce_{x}CuO_{4} (x=0.01) crystals affects significantly both the in-plane and out-of-plane resistivity. In the high-field collinear state, the magnetoresistance (MR) does not saturate, but exhibits an intriguing four-fold-symmetric angular dependence, oscillating from being positive at B//[100] to being negative at B//[110]. The observed MR of more than 30% at low temperatures induced by a modest modification of the spin structure indicates an unexpectedly strong spin-charge coupling in electron-doped cuprates.Comment: 4 pages, 5 figures, accepted for publication in Phys. Rev. Let

    Electronic inhomogeneity and competing phases in electron-doped superconducting Pr0.88LaCe0.12CuO4

    Full text link
    We use neutron scattering to demonstrate that electron-doped superconducting Pr0.88LaCe0.12CuO4 in the underdoped regime is electronically phase separated in the ground state, showing the coexistence of a superconducting phase with a three-dimensional antiferromagnetically ordered phase and a quasi-two-dimensional spin density wave modulation. The Neel temperature of both antiferromagnetic phases decreases linearly with increasing superconducting transition temperature (Tc) and vanishes when optimal superconductivity is achieved. These results indicate that the electron-doped copper oxides are close to a quantum critical point, where the delicate energetic balance between different competing states leads to microscopic heterogeneity.Comment: 14 pages, 4 figures, accepted to Phys. Rev. B as a rapid communicatio

    Microscopic analysis of the chemical reaction between Fe(Te,Se) thin films and underlying CaF2_2

    Full text link
    To understand the chemical reaction at the interface of materials, we performed a transmission electron microscopy (TEM) observation in four types of Fe(Te,Se) superconducting thin films prepared on different types of substrates: CaF2 substrate, CaF2 substrate with a CaF2 buffer layer, CaF2 substrate with a FeSe buffer layer, and a LaAlO3 substrate with a CaF2 buffer layer. Based on the energy-dispersive X-ray spectrometer (EDX) analysis, we found possible interdiffusion between fluorine and selenium that has a strong influence on the superconductivity in Fe(Te,Se) films. The chemical interdiffusion also plays a significant role in the variation of the lattice parameters. The lattice parameters of the Fe(Te,Se) thin films are primarily determined by the chemical substitution of anions, and the lattice mismatch only plays a secondary role.Comment: 30 pages, 9 figur

    Zn-impurity effects on quasi-particle scattering in La2-xSrxCuO4 studied by angle-resolved photoemission spectroscopy

    Full text link
    Angle-resolved photoemission measurements were performed on Zn-doped La2-xSrxCuO4 (LSCO) to investigate the effects of Zn impurities on the low energy electronic structure. The Zn-impurity-induced increase in the quasi-particle (QP) width in momentum distribution curves (MDC) is approximately isotropic on the entire Fermi surface and energy-independent near the Fermi level (EF). The increase in the MDC width is consistent with the increase in the residual resistivity due to the Zn impurities if we assume the carrier number to be 1-x for x=0.17 and the Zn impurity to be a potential scatterer close to the unitarity limit. For x=0.03, the residual resistivity is found to be higher than that expected from the MDC width, and the effects of antifferomagnetic fluctuations induced around the Zn impurities are discussed. The leading edges of the spectra near (pi,0) for x=0.17 are shifted toward higher energies relative to EF with Zn substitution, indicating a reduction of the superconducting gap.Comment: 7 pages, 7 figure

    Neutron scattering study of soft phonons and diffuse scattering in insulating La1.95_{1.95}Sr0.05_{0.05}CuO4_{4}

    Full text link
    Soft phonons and diffuse scattering in insulating La2−x_{2-x}Srx_{x}CuO4_4 (x=0.05x=0.05) have been studied by the neutron scattering technique. The X-point phonon softens from high temperature towards the structural transition temperature Ts=410T_{s}=410 K, and the Z-point phonon softens again below 200 K. The Z-point phonon softening persists to low temperature, in contrast to the behavior observed in the superconducting x=0.15x=0.15 compound, in which the Z-point phonon hardens below TcT_c. The diffuse scattering associated with the structural phase transition at 410 K appears at commensurate positions. These results highlight interesting differences between superconducting and insulating samples.Comment: 5 pages, 5 figure

    Constituents of the "kink" in high-Tc cuprates

    Get PDF
    Applying the Kramers-Kronig consistent procedure, developed earlier, we investigate in details the formation of the quasiparticle spectrum along the nodal direction of high-Tc cuprates. The heavily discussed "70 meV kink" on the renormalized dispersion exhibits a strong temperature and doping dependence when purified from structural effects. This dependence is well understood in terms of fermionic and bosonic constituents of the self-energy. The latter follows the evolution of the spin-fluctuation spectrum, emerging below T* and sharpening below Tc, and is the main responsible for the formation of the kink in question.Comment: revte
    • …
    corecore